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A Globally Stable Adaptive Controller )

for Multivariable Systems

R. P. Singh and K. S. Narendra

Center for Sysﬁe-s Science, Yale University

Introduction

Soon after the problem of adaptively controlling a single-input single-output

(SISO) system in a stable fashioﬁ was resolved in.i979 [1-3],.interest shifted to
?ﬁ: related theoretical problems. One of the principal questions currently.being
iz investigated is the posaibility of extending these results to multivariable |
systems [4-10].

The adaptive control problem can be broadly divided into two parts - an

algebraic part dealing with a specific parametrization of the plant and an

v analytic part dealing vith the adaptive laws and the resulting problems of con-
vergence. For stablé adaptive control of SISO plants, certain assumptions re-
garding the plant transfer function have to be made. In particular it is
assumed that the de-ign.r'has the knowledge of

(1) the relative degree n* of the plant transfer function,
(i11) the sign of the high frequency gain kp.
and (i1ii) an upper bound n on the order of the plant transfer function,

and that
(iv) the zeros of the plant transfer function lie in the open left half

plane.

té 0f these, conditions (1) and (11) are quite restrictive. As might be expected,

P

Zﬂ the corresponding conditions for the multivariable systems are considerably more

o

-~ & stringent. The principal aims of this paper are: ] '
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1) to elucidate these conditions and to discuss the considerations which
arise in the design of globally stable adaptive controllers for mxm multi-input

multi-output (MIMD) systems,

and i1) to examine the nature of the prior information needed for a complete

- solution of the adaptive control problem for 2x2 systems.
: In section IVa it is shown that the knowledge of the relative degree of
h an SISO system generalizes to the knowledge of the Hermite normal form of the

plant transfer matrix. The Hermite form plays a central role in the choice
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of a reference model in the multivariable case. In section Vb the definiteness

of a gain matrix associated with the plant transfer matrix is 'shown to correspond
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to the multivariable version of condition (11) and is needed to generate stable
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adaptive laws. Hence, the feasibility of using adaptive control for the MIMO
. case in practical situations hinges strongly on the availability of prior
information needed to satisfy the above conditions. '
Early attempts to extend SISO results to the MIMO case were made by
Monopoli and Hsing {4] for continuous time systems and by Borison [5] and Goodwin
et al. [6] for discrete time systems. All of them tacitly assumed that the

plant transfer matrix can be diagonalized. More recently, Monopoli and Subbarao

[10] have considered a special class of such 2x2 systems for practical applica-

e
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tions. In [7] Elliott and Wolovich introduced the concept of the interactor

e
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[15]) and later Goodwin and Long used this concept to generalize the results in

e [8]) .Independently of this work, recently, Morse [9] discussed the importance of
,'L' . the Hermite normal form of a transfer matrix defined over the principal ideal
F:g domain (PID) of proper rational functions [11] in the context of general MIMO
" adaptive control. 1In [9] it i{s stated that the Hermite form and the interactor

aca
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contain equivalent information.
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;:- _ As mentioned earlier, the Hermite form (or equivalently the interactor)

of the plant transfer matrix and the sign definiteness of the high frequency
gain matrix have to be known apriori before a stable adaptive conttollef can

be designed. In general, as discussed in section IVa, the Hermite form has a
triangular strﬁcture. In the approach used here, it is assumed that the relative
degree of each element of the plant transfer matrix is known. This information
is adequate to determine whether the Hermite form is diagonal or triangular,

and whether, in the latter case, it can be made generically diagonal using a
known prefilter. When the Hermite form is triangular, its off-diagonal elements,
in general, depend upon the unknown plant parameters and hence can not be
specified apriori. Therefore, a sufficient condition for adaptive control to

be practically feasible is that the Hermite form be diagonal. Even when this
condition is satisfied, the high frequency gain matrix Kp can be either diagonal
or non~diagonal. In the former case only the sign of each diagonal element needs
to be known for generating stable adaptive laws. When RsA is not diagonal, the
additional prior information regarding the definiteness of its symmetric part
must be available for the adaptive control of the multivariable plant. Thesé
.different cases are illustrated by considering 2x2 systems in detail. It {is
showvn there that all stably invertible 2x2 plants can be generically adaptively
controlled subject to the definiteness of the gain matrix.

Section II states the problem of multivariable adaptive control in a general
setting. Section III contains four important lemmas from the adaptive control
and multivariable literature. These are used extensively in the subsequent two
sections in setting up the reference model and realizing the controller in the
feedback form and in proving the stability of the overall system for different

types of 2x2 plants in section V.
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II. Statement of the Problem

An mxm wulti-input multi-output linear time invariant plant P is completely
represented by the m-input m-output vector pairs {u(*),y p(')}. It is assumed

that P can be modeled by a rational transfer matrix
-1
W (8) =2 (8)R "(s) 1)
P P P

with {Zp(s) and Rp(s)} right coprime polynomial matrices, both of dimension
mxm and Rp(s) column-proper (i.e., the constant matrix [Rp]hfomed by the co-
efficients of the highest powers in each column of Rp(s) is nonsingular). .Further,
WP(B) i8 of full Arank and is strictly proper. The zeros of the plant transfer
matrix, given by the roots of the polynomial det [Zp(s)]. lie in the open left
half plane, while the plant poles may be unstable. The parameters of Hp(s) are
assumed to be unknown.

- A reference model represents the behavior expected from the plant when the
latter is augmented with a suitable differentiator free controller (a cascade

controller in combination with linear state feedback). The model is linear time-

invariant and has a piecewise continuous and uniformly bounded reference input
vector r(-) and output vector ym(o) . The transfer matrix, denoted by Wm(s) ’

is strictly proper and stable.

The error between the plant and the model outputs is defined as
e_(t) s y (t) -y (t). 2)
1 P m

The adaptive control problem is to determine a suitable control vector u(*)

such that

1lim (el = lim (¢) =y () =0 &)
peo “el u ¢t 'yp Ym l
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As in the scalar case, the solution to the above problem can be divided
into two parts -~ an algebraic part and an analytic part. The algebraic part
is concerned with the equivalence class of reference models which can be used
as vell as the structure of the adaptive controller whose parameters are to
be adjusted. The existence of a solution then corresponds to the existence
of a constant controller parameter matrix such that condition (3) 1is satisfied
for any arbitrary input r(*). The structure of the controller also determines
the uniqueness (or nonuniqueness) of the solution.

Once the existence of a solution is established, the analytic part deals
with adaptive schemes for updating the unknown control parameter matrix, so
that error el(t) evolves asymptotically to zero.

I11. Mathematical Preliminaries

The algebraic and analytic aspects of the adaptive control problem are
discussed in the following two sections and use well known results in linear

multivariable theory and stability theory of dynamical systems. These results

_ are presented here as four principal lemmas and their relevance to the multi-

variable adaptive control problem is briefly discussed. Lemma 1 (Bezout Identity
for polynomial matrices) is proved here following the proof given in (1] for
scalar polynomials. Proofs of lemmas 2 and 3 can be found in standard texts

on multivariable systems [13,14]. A brief outline of the proof of lemma 4, which
is the multivariable version of the Lin-Narendra error model {17], is presented

here for easy reference.

a) Bezout Identity

Lemma 1: Let Q(s) and T(s) be mxm right coprime polynomial matrices with
each column degree of T(s) strictly less than the corresponding column degree
dj of Q(s), with Q(s) column proper (i.e., T(s)Q-l(s) is a strictly proper

transfer matrix). Then mxm polynomial matrices P(s) and R(s), each having
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highest degree (v-1), exist such that P(s)Q(s) + R(8)T(s) can be made equal to

any arbitrary mxm polynomial matrix M(s) with each column degree less than or

equal to (dj + v-1), where v is the observability index of the minimal transfer

matrix T(s)Q-l(s).

Proof: Since Q(s) and T(s) are right coprime polynomial matrices, there exist

polynomial matrices A(s) and B(s) [12] such that
A(s)Q(s) + B(s)T(s) = I.

Let M(s) be an mxm arbitrary polynomial matrix with column degree <« (dj + v-1).
Then

M(s)A(8)Q(8) + M(s)B(s)T(s) = M(s). (4)

-1
The right coprime factorization T(s)Q (8) can also be expressed by a left

coprime factorization E-l(s)F(s) with E(s) row proper and each row degree of

F(s) strictly less than the corresponding row degree of E(s). The highest

degree of E(s) 1s v, the observability index of the minimal transfer matrix

[14]. Hence,
2(s)Q"1(s) = 7 1(8)F(s) (5)
(4) and (5) can be represented as a composite matrix equation
M(s)A(s) M(8)B(s) Q(s) M(s)
i T o B 4

By elementary column operations, the above matrix equation can be reduced to

P(s) R(s) Q(s) M(s)
F(s) -E(8) T(s) 0




such that every column degree of R(s) is strictly less than the corresponding
column degree of E(s). Since the highest degree of E(s) is v, the highest degree
of R(s) can be at most (v-1). Further, since Q(s) is column proper and each

column of M(s) has degree less than or equal to (d, + v - 1), the polynomial

3
matrix P(s) can have degree at most (v-1).

This lemma is used to establish the existence of a controller structure so
that the transfer matrix of the plant together with the controller is identical
to that of the model.

b) Decoupling by State Feedback

Let G(s8) be a nonsingular mxm strictly proper transfer matrix. Let d1
denote the minimum relative degree in the ith row of G(s), if.e., d1 - min (degree
difference in 8 of the denominator and the numerator of each entry of the ith
row of G(s)) - 1. Let (1lxm) constant row vector Ei be defined as

d,+1
A
Ei-' 1im s 1 G(s).

gy

It is known [13] that d1 and Ei are invariant under linear state feedback.
Lemma 2: Let G(s) and Ei’ i{i=1,...,m be defined as above. G(s) can be decoupled

by linear state feedback if and only if the constant matrix

w

[

- %2

;'.' E= : (6)
E

L iy

is nonsingular.

The entries in the matrix E are the high frequency scalar gains associated
“; with scalar transfer functions of minimum relative degree in each rov of the
transfer matrix. This lemma is used in section Va to specify the model from a

knowledge of the relative degree of each entry in the plant transfer matrix.
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¢) Number of Inputs and Outputs

. Lemma 3: A transfer matrix G(s) is output function controllable if and only if
it has linearly independent rows over the field of rational functions, 1.-,, the
rank of G(s) is equal to the number of outputs.

In model reference adaptive control, for the plant output to follow the
model output asymptotically, the plant transfer matrix must be output function
controllable. If such a transfer matrix has more columns than rows, then the
number of inputs in excess of the number of outputs of the plant can be set to
an arbitrary value, and in particular, to zero. This pertains to the colums
of zeros in the Hermite normal form [cf. 11] of a rectangular transfer matrix.
Alternatively, this is equivalent to selecting inputs corresponding to linearly
independent columns of the transfer matrix, which in turn is reflected in the
nonzero columns of its Hermite form. Hence, in general, it is sufficient to
consider square transfer matrices with the same number of inputs and cutputs.

" d) Multivariable Error Model Prototype 3

Lemma &4
Given a stable m-input, m~output n-dimensional minimal triple (C,A,B), two

symmetric positive definite matrices [ and I'. and w(t): [0,») - RP whose elements

1
are piecewise continuous functions, the equilibrium state of the set of differ-

ential equations

e(t) = Ae(t) + Bu(t)

el( t) = Ce(t)

- v(t) = ¢(t)a(t) - wT(t)I‘lw(t)el(t) n
. ' 'Q(C) - -I‘el(t)mr(t) (8)
F:' . is stable if the transfer matrix T(s) = C(sI~A) -]'B is strictly positive real (SPR).

P A P N N R R R P R
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- Proof:
. The proof follows directly by using a Lyapunov function candidate
V(e,®) & eT(t)Pe(t) + trace [97(t)I 1a(t)] with P = PT > 0 (9)
and the matrix version of the Kalman-Yacubovich Lemma [18]. This yfelds
L . T T T T
s V(e,?) = -e (t)[GG™ + eN]e(t) - 2e1 (t)el(t)m (c)l‘lu(t) <0 (10)
L
is for some G and N = NT > 0 matrices and ¢ > 0.
It follows that the error model is uniformly stable and e(t) (hence el(t))
o
‘;E-; and o(t) are uniformly bounded for all finite initial conditions. Further, from
,. (g) and (10)it follows that e(*) and 3(-)61.2. If in addition it is assumed that
H w(t) and t.n(t) are uniformly bounded, it can be concluded that 1im e(t) =0
: . e
- and 1im &(t) = 0. However, very little can be said about the convergence of
t-no
#(+) to a constant matrix.

Remark: If T(s) = 1 in the above lemma, the third error model (eqns. 7,8) degener-
ates into the first error model. The equations describing such a model and the

corresponding adaptive equations may be expressed as follows

3 a(t)u(t) = e;(t) (11)

& . re, ()o(t) r=r">0

1

S o(t) = - —gp——— T

= 14w (t)I‘lm(t) 1‘1 - I‘14 > 0. (12)

>

": Using similar arguments, it can be shown that when w(t) and 4:)(:) are uniformly
% bounded, 1im e (t) =0 and lim &(t) = 0.

- | 2and tr=
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IV. Structure of the Adaptive Syctui: General Case

a) Hermite Normal Form

In a model reference adaptive system, the oﬁtput of the plant is required to
follow the output of a reference model. The plant together with the controller,
whose parameters are adjusted, asymptotically approaches a linear time-invariant

system. The transfer matrix of the latter should therefore be identical to that

of the reference model for perfect model following, if the class of inputs is

" sufficiently general. An important question that has to be resolved in the initial

stages of design is the choice of the model transfer matrix, i.e., the class of
rational transfer matrices from which the model transfer matrix should be selected.
It is in this context that the Hermite normal form is found to be important.:

The principal idea here is that the set of all stable reference models can be
generated by the stable Hermite form of the plant transfer matrix.

The following concepts from linear systems theory are found to be relevant
for a discussion of the Hermite form.

The set of all proper rational transfer function Eb(s) is a principal
{deal domain (PID). A matrix with elements in Rb(s) is invertible if and only
if its determinant is a unit in RP(S). A unimodular matrix is an invertible
proper transfer matrix whose inverse is also a proper transfer matrix. If the
'relative degree' (degree of the denominator minus the degree of the numerator)
of each rational transfer function is taken as the 'degree' of each element, a
division rule can be established, making this a Euclidean domain [16].

Two transfer matrices Tl(s) and Tz(s) over Rp(s) are said to be dynamically
equivalent if and only if there exists a unimodular matrix C(s) over Rb(a) such
that Tl(s) - Tz(s)c(s). The Hermite normal form for nonsingular matrices over
PID [12], obtained by performing elementary column operations on the matrix,
represents the can§n1c31 form within each equivalence class. This together with
the rank of the transfer matrix represents the complete set of invariants within

each class [11].




The Hermite form of an mxm matrix T(s) over Rb(s) is a lower triangular

mxm rational matrix of the form

r—-l -T
by |
1
21 n2
¢ H(s) = . ﬂ ' (13)
. ; . 1
: h
= ml n12
F La

e
. ‘ where hij(s) = {éﬁii ’ ni.1 <n}, éﬁii is proper and ni and niJ

n
integers. m(s) Is any monic polynomial of degree 1. The choice of #(s) is

are positive

LT ow
Attt

immaterial, but once it is chosen the Hermite form H(s) is unique. If Hl(s)

is n -Hermite form and Hz(s) is n_-Hermite form, then either can be obtained

1 2
from the other by elementary column operations. In other words, Rl(s) and Hz(s)

are dynamically equivalent. However, if the roots of 7(s) lie in the open left
half plane, H(8) corresponds to a stable Hermite form.

From the foregoing discussion it follows that every plant transfer matrix
Wp(s) generates a class C of dynamically equivalent models. The set of all
stable reference models which the plant transfer matrix can follow, denoted by
W, is a proper subset of C. Hence, by the preceding considerations, a stable
Hermite form of the plant transfer matrix itself can be chosen as a reference
model. The entire class (! of the stable reference models can then be generated

by postmultiplying the Hermite form by a known and fixed dynamic controller.

The importance of the Hermite form H(s) ¢ W lies in the fact that it can be

determined a priori directly from reasonable information about the plant trans-

fer matrix Wp(s). In algebraic terms, the Hermite form represents a basis for

the free module over Rp(a) spanned by the columns of the plant transfer matrix.
Dynamic equivalence then implies that the free modules spanned by the columns

of the plant and model transfer matrices are the same.

AR |
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For SISO systems the Hermite form is simply -l;', vhere v is as defined
* n
before and n 1s the relative degree of the transget function. The unimodular

form is just a unit in xp(s). The invariance of the relative degree and the

‘realization of the controller in the feedback and the feedforward form are well

known in adaptive control literature. In that sense deg[det H(8)] represents
the multivariable analog of the relative degree (deg[det Rp(s)] minus degldet Zp(s)])j
It iq shown in the next subsection how the multivariable controller can be realized.

b) Controller Structure

From the discussion in section IVa it follows that the reference model trans-

fer matrix wm(s) is dynamically equivalent to the plant transfer matrix Wp(s), i.e.,
W (8)Q(s) = W (s) (14)

for some unimodular matrix Q(s). If H(s) is the Hermite form in the equivalence

class, then
Wp(s)Qp(S) = H(s) = wm(s)Qm(s) (15)

where Qp(s) and Qm(s) are unimodular matrices. From the above two equations it

readily follows that
-1 :
Wp(s)Qp(ez)Q‘n (s) = WP(S)Q(B) =W (s). (16)

The basic structure of the adaptive system is shown in Fig. 1. The feed-
forward controller Q;l(s) is fixed and known., The controller Qp(s) can be

realized as shown below.

Let Qp(s) be factorized as Rp(s)P;l(s)Ko = Rp(s)(I((-)]'I’F(s))-1 such that
3y (R ()] = 3 [P (e)]

(R, = [Pgly » an
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13

and lim Qp(s) = 1im R (s)PF (s)K = K (18)

- 2and - S aud 0’

3c j[-] denotes the column degree of a polynomial matrix and [-]h represents the
constant matrix formed by taking the coefficients of the highest powers in each

column of a matrix. From eqn. (15)
(oW ()10 () = 1 . (19)
Since Qp(s) is unimodular, [H-l(s)ﬂp(s)] is also unimodular. This implies
lim (B (S)W (s)] = lim [(H (8)2 (8))(R (8))] = K (20)
3” s-)ﬂ p

where Kp is a constant nonsingular matrix, and
-1
= 3 R
acj [H “(s) Zp(s) ] o4 [Rp(s) ]

Kp is the high frequency gain matrix of the transfer matrix. In view of (17)

and (19), let

-1 -1
KO PF(B) .,H (s)zp(s) (21)

such that

& -1

::1_: acj[H (S)Zp(s)] - 3cj[Rp(8)] = 3cj[PF(s)] = dj-

<

- From (19)

.

& ta @2 DK (6) = 1in @2 ()R )+ 1im o (o

= . aaed - pad - Band

e

:—-:- = KP'KO =T

' Hence, Ko = K;l.

f‘ Then (21) becomes

: e

_'_f: P (s) xpla (92 (o).

=

&)

%




~~~~~~~~~~~~~~~~~~~~~~~~~~~

The overall transfer matrix is given by
(2 (s)R"(8) ][R (8)P L(8)K.] = Z (8)[2 " H(8)K JK. = H(s) (22)
P P p-F 0 P P p 0

The controller Qp(g) - Rp(;)r;l(s)Ko consists of gain matrix Ko in the forward

path and two auxiliary signal generators Fl and F, in the feedback path. F

2
contains a system with transfer matrix wl(g) = n-l(s)c(s) and Fz contains a

1

system with transfer matrix wz(s) - N-l(a)D(s) + DO' For constant values of

par#metera, the overall .ransfer matrix from v(t) to yp(t) is W(s), where
-1 -1
W(s) ZP(S)RP (s)Rp(s)[(N(s) + C(S))Rp(s) + (p(s) + DON(S))ZP(S)I
-N(8) K, . (23)

By Lemma 1, given a polynomial matrix PF(s) of column degree dj and an arbitrary
polynomial matrix N(s) with arj[N(s)] = v=1 such that acj[N(a)'Pr(s)] = dj + v-1,
polynomial matrices C(s),D(s) and a constant matrix Dy of appropriate degrees can

be determined from the following BeZout identity.

[N(s) + C(B)]Rb(e) + [D(s) + DON(s)]Zp(c) - N(s)Pr(s).

v 1is the observability index of the plant transfer matrix which is assumed to be
known.*

The arbitrary mxm polynomial matrix N(s) is chosen such that it is row
proper and it commutes with both C(s) and D(s). Hence, N(s) is chosen as diagonal
[n(s)) where n(s) is an arbitrary monic Hurwitz polynomial of degree (v-1).

rl generates a set of auxiliary signals

wiT(t) - ﬁ[s"‘zuT(:),...,-°uT(c)1 {=2,...,v (24)

and contains (v-1) mxm parameter matrices ci(i = 1,...,V=1). Fz generates a set

* An upper bound on v is sufficient, but then the above equation may not have
a unique solution.
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of auxiliary signals

1 [ v 1 T
n(s)

mi.r(t) - (t)....,s (0] 1=, (25)

and contains v mxm parameter matrices Di(i = 0,1,...,V-1). Together with
wl(t) = y(t), output of the feed forward controller, and K, these constitute

2v m-vector signals and 2v(mxm) matrices of adjustable parameters of the con-

troller denoted by the elements of a parameter matrix
o(t) & [ (6)3€,(8),0u0sCy_ (805DG(8),D (1), .00, D,_ (8] (26)

The control input u(t) to the plant is given by 6(t)w(t) - el(t)wT(t)rlw(t)

*
1~ I‘IT > 0. For 6(t) = 6 , the desired feedback’ controller parameter

matrix, the plant together with the feedback controller yields its Hermite form.

where T

The parameter error matrix ¢(t) is defined as

ov) 4 a(r) - 6"

and this gives rise to the error transfer matrix.

c) Error Equation
The error transfer matrix representing the error equation between the plant

and its Hermite form is given by
W (s) = H(s)K @7n
e P

Hence, the error model can be represented as shown in FPig., 2 with

*(t)w(t) - el(t)u.r(t)rlu(t) as the input to a system with transfer matrix "e(l) .
It is worth noting that the signals "’1“) (1=1,...,2v) are derived from v(t),
output vector of a known and fixed feedforward compensator Q:l(l).u(t) » the

plant control input vector and yp(t)‘. the output vector of the plant.
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V. Adaptive Control Problem: 2x2 Systems

Iﬁj a.
-
N

adaptive control of 2x2 systems.

In this subsection the concepts discussed in section IV are applied to the
It is assumed that the relative degree of each

o of the four scalar transfer functions in the plant transfer matrix is known and

that adequate information regarding the matrix E (cf. eqn. (6)) is available so
thaf the nature of the Hermite form can be concluded using lemma 2. The differ-
ent situations that can arise are discussed and it is shown through examples
that adaptive control is, in general, feasible only when the Hermite form is
diagonal. In other words, the plant transfer matrix is decoupled using the
controller structure described in the previous section. 1In such cases, the
exponents nj along the diagonal in H(s) represent the minimum relative degree in

the corresponding rows of the plant transfer matrix. In the discrete case a

diagonal transfer matrix implies that each output is affected by an independent

input (or inputs) with minimum delay. The nonzero entries in the high frequency
gain matrix Kp in (eqn. 20) are the scalar gains associated with the transfer
functions of minimum relative degree in each row (cf. lemma 2).

Throughout this section the term 'controller' will refer to the feedback

controller whose parameters are to be adjusted and the term 'model' will be

used interchangeably with the Permite form of the plant transfer matrix.

ot

T ‘-u.‘rr.u.
NEN B AN
A0 SEDRRNCAR

‘ 1 k2
Example 1 Let Vp(s) = s+°1 s+a2
k
k
3 L
s+u3 s+a4
b —

represent the plant transfer matrix in which k

parameters.

in the open left half of the complex plane.

i
It 18 further known that the zeros of the plant transfer matrix lie

and a, (1=1,2,3,4) are unknown

In the following three cases, the

prior information that is assumed regarding the unknown parameters

greater.

o o 8 g

U IS S I P

is successively
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Case (1) Let k1k4 $ k2k3

b . In this case the model (Hermite form) H(s) is diagonal and the high frequency

& ‘
j:':-f gain matrix Kp is the same as E in eqn. 6 and ‘
3 1 |
o s+a 0 |
E H(s8) = 6 1 a>0; Kp - . ‘

(11) - +
Case (11) Let klklo k2k3 and a, +a, ¢ a, + a,
The singularity of the matrix E for wp(s) implies that the model will be

triangular. The Hermite form H(s) and the corresponding high frequency gain

matrix K_ are respectively:

P
proy 0 1 2
H(8) = a> 0; Kp =
) k3/k1 1 k3(a1-03) kl.(az-“l.)
sta ( e+a)§ .
—— evmm—
. It is clear that considerable information regarding the plant parameters will

be needed to set up the model as well as to generate the adaptive laws.

Case (111) Even greater knowledge of the plant parameters will be needed for

adaptive control when k1kl. = k k,  and a, ta, = a, +a, resul ting in !

23

— —_ - _

—_ 0

sta k) k)

H(s) = y a>0; l(p-
[s+at+(q_— )] . A .
-E-:- a0, L k3(ul-03) k‘.(az-al.)

L (a+a)z (s+a)3 (a-a3) (a~a,)

Hence, even in the simple case described in this example, adaptive control may be

practically feasible (in terms of the prior information needed) only in case (1)

. where H(s) 1is diagonal and Kp has a simple structure.

N DL LI T . RS . . . . . : p
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Exawple 2 In this case the transfer matrix

1 1|
""’1 (a+a2) 2
W(s) =
P k
— 1
sty (s+04)
- —

and has transfer functions of minimum relative degree in both rows in the first
column. Once again the matrix E is singular so that the model H(s) is triangular

and the high frequency gain matrix Kp is no longer the same as E.

;}__.. 0 1 0
H(s) = a>0;K =
k ) > kylay=a,) (1K)
L_(a+a) ( '+.) —2—
k3 $1

For the same reasons as before, considerable prior information regarding the unknown
plant parameters will be needed in this case also for the implementation of an

adaptive controller.

The above two simple examples illustrate the two different ways in which the
Hermite form of a plant transfer matrix may become triangular. By completely
classifying (2x2) transfer matrices in térms of their Hermite forms we can estab-
lish the prior information needed to control them adaptively.

Let the transfer matrix of a 2x2 plant be represented by

p—— —

o [+ 3
1 2
—_ K, =<
48 23,
W(s) =
P
[+ } a
“33—3 kA‘BA
|~ 3 4

»
wvhere ki (1 =1,2,3,4) are the high frequency scalar gains and ng (1 = 1,2,3,4)

are the relative degrees of the four transfer functions. Using lemma 2, and

PIVEIRY |
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*
knowledge of n, the models and the gain matrices corresponding to four differ-

ent classes of all 2x2 plants are delineated in Table 1. The number of elements

* * *
in each class is shown in column 1 (for example n, <mn,, n, >mn and
* * * *
n, > 1, ., n3 < n4 are the two elements of class I). The structure of only

one typical element in each class is given in column 2 and every element of
the class can be reduced to the same form by relabling the rows and/or columns
f W (8).
o p( )
In class I both the model H(s) and the gain matrix Kp are diagonal. Adaptive
control is possible in this case if the sign of the elements of l(p are known. In

class II, which contains four elements, H(s) is diagonal but Ky is triangular.

I I1 I11 IV
Condition on the Structure of Structure of
rel. deg. Model, H(s) gain matrix Kp
%* . * — pu—
0
1 n, <n, 1 ~ 0 l_tl
2 elements " (s+a) 1
n, >n 0 k
3 4 1 4
0 n*
(s+a) l'_J
11 n, <n, 1 . 0 kl 0
n
4 elements (s+a) 1
3 %* 1 *
n3 = n4 0 -————*n3 -04 k3 k‘
| (sta)
* * e —
111 n, =n 1 e
1 2 n]_ '“2* 0 kl kz
1 element * (s+a) k.k ¢ kk
: n, =n 1 4 273
2 4
0 —1 . k3 klo
n3 +n4 L
| (s+a)
* *
v n, < n2 Non diagonal Not obvious
2 elements *
n3 < nl‘

Table 1
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[ A sufficient condition for adaptive control is that K be sign definite (shown
, P

t * in the next subsection) and hence considerably more prior information is needed

.
. in this case. 1In class III, which has one element, the minimum relative degree
L

in each row occurs in both columns. If klkl. # k2k3 and the matrix Kp is sign

In class IV the transfer functions with minimum relative degree (in each
row) occurs in the same column so that H(s) is triangular in structure. The
corresponding gain matrix K_ also depends in general u,on the unknown plant

P
parameters in a complex way. Hence, for this class of transfer matrices,

b
F definite, the plant can be adaptively controlled.
A

adequate prior information is generally not available to enable adaptive con-

trollers to be designed directly. However, as shown in example 3, using

-
.

7 RRARRNE
st e et .
, N

dynamic compensation, the Hermite form of the modified transfer matrix may be
made diagonal. The following simple example illustrates how this can be achieved.

Example 3: In example 2 it was shown that when

1 1
, (s%e)) (s+a,)
g‘ Wp(l) -
- ks 1
i. the resulting H(s) would be triangular and contaip the unkpown plant parameters.
. - 0
' If such a plant is augmented by a matrix D(s) = |s+8 » B > 0, then the
F'._" 0 1
i modified plant transfer matri- |
e a1 L
B URCRLRCLOR (B (o4
k3 1
—_—
(%33 Te+6) (s+a,)

has a diagonal Hermite form Hl(s) wvhere
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A sufficient condition for adaptive control is that Kp be sign definite (showm
in the next subsection) and hence considerably more prior information is needed

in this case. 1In class II1, which has one element, the minimum relative degree

in each row occurs in both columns. If klk‘. ¢ k2k3 and the matrix Kp is sign
definite, the plant can be adaptively controlled.

In class IV the transfer functions with minimum relative degree (in each
row) occurs in the same column so that H(s) is triangular in structure. The
corresponding gain matrix K P also depends in general upon the unknown plant
parameters in a complex way. Hence, for this class of transfer matrices,
adequate prior information is generally not avajilable to enable adaptive con-
trollers to be designed directly. However, as shown in example 3, using
dynamic compensation, the Hermite form of the modified transfer matrix may be
made diagonal. The following simple example illustrates how this can be achieved. |
Example 3: In example 2 it was shown that when

[ a1 1|
(sta,) (s+a,
Wp(a) =
_ k3 1
! (sta;) (sta,)’
@ the resulting H(s) would be triangular and contaip_ the unkpown plant parameters.
; L 0

r. 1f such a plant is augmented by a matrix D(s) = |s+8 s 8 >0, then the
:." 0 1
ﬁz,‘; modified plant transfer matrix
. 1 1]

o
2 W 1) = W (D) - (42 ) (548)  (o4n,)
L- . k3 1
3 (s¥a3) (8+8) T
¥' | 3 (m,.) ]
E- ) has a diagonal Hermite form lll(l) vhere
.
2
1
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A sufficient condition for adaptive control is that Kp be sign definite (shown
g * in the next subsection) and hence considerably more prior information is needed
. in this case. In class III, which has one element, the minimum relative degree
. in each row occurs in both columns. 1f k1k4 $ k2k3 and the matrix Kp is sign
p definite, the plant can be adiptively controlled.

In class IV the transfer functions with minimum relative degree (in each

row) occurs in the same column so that H(s) is triangular in structure. The

trollers to be designed directly. However, as shown in example 3, using

S corresponding gain matrix Kp also depends in genersl upon the unknown plant

3 parameters in a complex way. Hence, for this class of transfer matrices,

: adequate prior information is generally not available to enable adaptive con-
e

]

dynamic compensation, the Hermite form of the modified transfer matrix may be

E made diagonal. The following simple example illustrates how this can be achieved.
‘ Example 3: In example 2 it was shown that when

) 1 1

2 (sta)) (s+a,)

- Wpte) = "

= 3 1

;; [Crwy (rag)?

;. the resulting H(s) would be triangular and contaip the unkgown plant parameters.
1 0

If such a plant is augmented by a matrix D(s) = |s+8 , 8 >0, then the
- 0 1

& modified plant transfer matrix

& — ]

| 1 1 —

- Wpl(s) = W (8)D(s) = (s+a,) (s+6) (s+a,)

L'.::': . k3 1

HN (staj) (s+8) (s+a )2

. — &

N has a diagonal Hermite form Hl(s) where

.

.b'.

)
st e

AL .
o
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1 > 0
(s+a)
ul(s) = a>0
0 L 3
- (sta) | 1 1
The corresponding high frequency gain matrix Kp is which 1is
k. 1
3

the same as the matrix E for W;(s) .

Using the above approach we now show that all transfer matrices wp(s) which
correspond to class IV can be reduced to one of the previous classes using dynamic
prefilters. The three distinct cases which can arise are treated separately
below and the minimal order diagonal compensators are specified in each case.

* * *

1) n, 'O-ta4 <n2 +n3

Using a dynamic precompensator with transfer matrix D(s) where

1 ) 0
D(8) = (s+a) (n4 -n3 sa>0
0 1l

the Hermite form H(s) and the gain matrix Kp of the modified system can be obtained

as
""1F““%"'§' 0 ’ -:; 0]
."(nl +n4 -n3 )
1 1
H(s) = y K =
1 P K, k
0 * 3 A
"
— LA
* * * *
(11) n, +n, =n, +n, and klk4 ¢ k2k3
If ul(t) is filtered by ——(:—*—-*) and nz(t) by 1, the new Hermite form ul(s)
-Nn
(shg) 4 3
and gain matrix x; are given by the following.
1 o |
———
. n_ =n
Hi(e) = [n2 1 ,K:-
1
0 —%
n3 "
——— " gl
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(ii1) n +n4 >n. +n

:) 2 3
Filter ul(t) by ————l;—*—;—* and uz(t) by 1 to obtain
2 -
(s+) = 1
ED i
1 2 1
H () = " . Kp = .
1 0
0 *  x
L —

Remark In [19], using a geometric approach, the generic decoupling of a plant
represented by the triple (C,A,B) using only state feedback is discussed. However,
since the mapping from the parameter space of (C,A,B) to the parameter space of
T(s), the transfer matrix, is not bicontinuous, properties true in (C,A,B) space
may not be true in the parameter space of T(s).

Since the construction of the Hermite form or the interactor is done in the
parameter space of the transfer matrix, its generic decoupling can not be concluded
on the above basis. The problem arises because the matrix E(Eqn. 6} is not a
continuous function of its arguments, namely the minimum reist x¢ degris in each
row of the transfer matrix.

Hence, the point made in [8] that the diagonality of the interactor matrix
(equivalently the Hermite normal form) is a generic property does not apply here.
In fact, as shown above, almost one third of all 2x2 transfer matrices have non-
diagonal Hermite forms.

b) Adjustment Laws:

In this subsection adaptive laws for the adjustment of the controller
parameters are developed for all 2x2 systems categorized in table 1. Since, by
introducing known prefilters, transfer matrices which belong to class IV can be
reduced to one of classes I-III, only the latter are considered here. The analysis

is limited to error models which arise in the various cases. Only a brief

..........
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description of the corresponding controller structures is given since they are

merely multivariable extensions of those used in SISO systems discussed extensively
in [1] and [2] and modifications of the basic structure described in the previous
section. The proof of stability of the overall control loop for SISO systems

in [2] can also be directly extended to these multivariable systems and hence is not
discussed here.

The complexity of the controller used in the various cases depends upon the
amount of prior information available regardiﬁg the gain matrix Kp as well as the
Hermite form Hp(s). The simplest cases occur when KP is known and HP(B) is strictly
positive real. In the following, the various cases are arranged in increasing order
of generality.

(i) K_Known: If Kp is known, considerable simplification is achiéved by including
a fixed gain matrix K;l in the control loop. The modified plant transfer matrix
then has a high frequency gain matrix which is unity (i.e. Ko = I). The adaptive
controller contains 2x(4v-2) parameters which are the elements of a parameter

error matrix ®(t) and the corresponding (4v-2) dimensional vector signal is denoted
by w(t).

a) H(s) SPR (strictly positive real)*:

When H(s) 1is SPR the parameter error matrix is updated according to the law

- - T
¢(t) = o(t) = -Te, (t)u(t) Tr=T">0
By lemma 4 the output error el(t) and ®(t) are bounded. Since the output of the
model is bounded, this ensures (as in the SISO case) that the state of the plant
and hence w(t) is bounded. Hence el(t) + 0 and 3(t) +0as t+» It is
=T -
worth pointing out that for this case the feedback term e w (t)Tw(t) is not needed

1
to prove global stability of the adaptive loop.

* A diagonal matrix of rational functions is strictly positive real if and only
if each diagonal element is strictly positive real,




i e Pk
-, . A e
. . AR

7 S

vy
t

L AJMSE AL ARLAEA s e
A

1
'Y":L~x..
. .t < AR

V"

25

b) H(s) not SPR

If H(s) is not SPR, auxiliary signals have to be generated and added to the
model output to avoid differentiation.* The controller of Fig. 1 is modified as
shown in Fig. 3. The simple error model of Fig. 2. changes to the augmented
error model shown in Fig. 4.

Let GiT(t) and ¢1T(t) denote the ith row in O(t) and ¢(t) matrices respectively.
Let hll(s) and h22(s) be the two non-zero diagonal elements of H(s). In construct-
ing the auxiliary signals the matrices O(t) and H(s) have been expanded, so that
cancelations for O(t) = 0*, the true parameter matrix, can occur in the auxiliary
loop of the error model in Fig. 4.

From Fig. 4, the error equations can be derived as

€, () i . (O (®
1+;1(t)r1£1(t) )
e(t) =
ez(t) 1 T -
1+g ()T, ENT
| 2 2 5 ]
where El(c) = h, (s)u(t) and Ez(t) = h,,(8)u(t).
The adaptive laws are given by
z - - T
el(t) = ¢1(t) = -T,e,(t) sl(c) rp=r; > 0 and
- - - . _ . T
ez(t) = ¢2(t) = -rzez(:)gz(t) r,=r, > 0.

By the remark following lemma 4, the error system is uniformly stable and

e(t) and ¢(t) are uniformly bounded regardless of w(t).

* Simjilar to the operator L(¢) in [1] for SISO systems, a diagonal matrix of
opgrators S(*) exists which makes H(8)*S(s) SPR. For simplicity of analysis
S “(8) = H(s) 1is chosen.
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Fig. 3.

Adaptive Controller for Kp Known and H(s) Not SPR.

e(t)

t Plant Error

'@—b

Fig. 4. Augmented Error Model [xp Known, H(s) not SPR]

I: Identity matrix of (4v-2)dimension

~

e2: Auxiliary Error
¢: Augmented Error
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(11) Unknown Kp
When Kp is unknown the controller structure is considerably more involved.
More prior information about the plant transfer matrix is needed to obtain a
stable adaptive controller.
a) H(s) SPR
The céntroller structure remains the same as in Fig. 1. The error model

also remains the same as in Fig. 2. The parameter error matrix ®(t) is updated

according to the law

o(t) = 8(t) = -rel(:).f(c)

The boundedness of el(t) and #(t) can be proved by lemma 4. By the same argument
as in the previous case, el(t) and 5(t) + 0as t + =, However, now the input
T

b v(t) in eqn. 7 is Kp[Q(t)w(t) -uw (t)le(t)el(t)]. It can be easily shown that

Kp must be positive definite to prove that V > 0 and 6 £ 0 in lemma 4.

T

For the transfer matrices in class I, the knowledge of the sign of each
entry in Kp is enough to meet this sign definiteness condition.
b) H(s) not SPR

Since H(s) is not SPR, auxiliary signals have to be generated to augment
the model output. To account for the unknown gain matrix, an additional gain
parameter matrix Y(t) is introduced in series with the auxiliary signals. The
controller structure in fig. 3 is modified slightly to include Y(t) between the

summing junctions 4 and 5. The error equation changes somewhat and the error

LB AL CHNE Su% pan o0 72 sead 4 L ARRARAY
P A A AN

»; model is shown in fig. 5 for class III (Kp nonsingular) transfer matrices.

?: Other cases in classes I and II can also be suitably specialized. ¥(t) is also
'2? : ' adjusted along with O(t) such that as t > «,¥(t) - K* (K* is a diagonal matrix
g; formed by the elements of Kp arranged along the diagonal) and o(t) -+ e*.

?7 - The augmented error vector from fig. 5 for this case can be computed to

}i be

»

™
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e1=

e2=

T
Tr=T1T >0

Plant Error

Auxiliary Error

Augmented Error

= 28
Eff — [ T T ]
;i cl(:) T+ [(k1¢1(t)+k2¢2(t))El(t)+k181(t)tl(t)+k282(t)cz(t)]
! 9 ;(t) - -
3 T
:2(1:) " : . [(k30:(t)+k‘02(t))Ez(t)+k383(t)cs(t)'l-k,‘z,‘(t) g,(0)]
- —
where € (t) = h . (s)w(t) and £,(t) = h,,(8)w(t) and x = (;{(t);:(t))r (El(tj) .
ez(t)
(v)
w(t) e1(t : -
-3 p— 50_ xp N H(s) T . [—v
, o i
3 63(0) 0
; h .1 T ()
. :,( 1 ) = o5(e) 0
3 SRR
! T
. Lo 0, (x) '
. LGN
D@-b E

) §

Identity matrix of 4y dimension.

Fig. 5. Augmented Error Model [unknown K, and H(s) not SPR]

and G(t) = dug(.i(;))‘ ) vy - 1.

The corresponding adaptive laws are

;;;;;;;

— —T —
ad o (o) DR G
XE) 4,70 0 b (o)1 (01,
| - s o7 - o) |- w(®
T,4(t) , hy,(8)1 hy, ()1, ,
T
2 I A
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. T T
* (t) ] el(t)€1 (v
b, (0 £, (g, (®)

g,(t) = -Ylel(t)cl(t). 8,(t) = -Yzel(c)tz(t)

B3(8) = =v,e,L,(0), ;Z(c) RANCIACE

5 v, > 00 1=1,2,3,4,

,‘ Using the Lyapunov function approach it can be shown that the error system is
‘stable and e(t) and #(t) are bounded. But a sufficient condition for this is
that Kp be such that there exists a matrix I' such that the symmetric part of
.- (Kpr) be positive definite.

{i- As pointed out in [2] for SISO systems, the main stability question arises

when H(8) is not SPR.  In this case auxiliary signals are used which cannot be

. assumed to be bounded. So even if e€(t) is bounded, boundedness of the plant
outﬁut yp(t) and hence all the relevant signals can not be concluded. The nature

of the stability problem is the same whether Kp is unknown or known. The fact

that €(*) and &(-) ¢ L2 can be concluded through the existence of a Lyapunov

function as was done in lemma 1. Boundedness of w(t)(w(t)) and w(t) (w(t)) can

T

be shown using the same arguments as in [2) making it possible to conclude the

stability of the adaptive control loop in the large.
™
Ei‘ Remark 1
*
f? A similar condition on the gain matrix has been obtained in [8] for the
o

discrete case and in [9] for the continuous case. Elliott et.al. in [7] have
made somewhat more restrictive assumptions regarding the structure of Kp to

generate stable adaptive laws.

.........................
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ﬁ:j VI. Conclusions
-—“—-jl Hermite normal forms of nonsingular transfer matrices play a central role
in determining the class of model transfer matrices which the plant can follow.
However, due to inherent complexity in specifying the Hermite form in general,
Eé! it has been argued that adaptive control is practically feasible only for
those plants which have diagonal Hermite forms, i.e., which can be decoupled by
using state feedback only. The sign definiteness of the‘high frequency gain
& matrix ILPI has been found to be sufficient to generate stable adaptive laws.
;7 For 2x2 systems, the knowledge of relative degree of each scalar transfer
function has been used in determining the Hermite form. A globally stable

adaptive controller has been developed and it has been shown that all 2x2 stably

b -

invertible systems can be generically adaptively controlled subject to the
definiteness condition on the gain matrix. ‘QEL"——
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